If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2-18t+1=0
a = 9; b = -18; c = +1;
Δ = b2-4ac
Δ = -182-4·9·1
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-12\sqrt{2}}{2*9}=\frac{18-12\sqrt{2}}{18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+12\sqrt{2}}{2*9}=\frac{18+12\sqrt{2}}{18} $
| 7=6−4r+4r | | 5^5x=5^x-2 | | 3y-4(y+2=18 | | 3x+2X+5+9X-7=180 | | -3x-4x-5x=48 | | (x+2)(x-3)(x-4-5√-1)(x-4+5√-1)=0 | | 9x-19+8x-11=180 | | 3.45x12.2= | | 40=-1.5x+60 | | 1/4x-5=10-x | | 8x+9-3x+12-4x=0 | | 7x–20=4x+16 | | 4u+8-2(-6u-1)=2(u-1) | | (x-2)(x+4)(x)=1120 | | 8k-3=1 | | 0.4x=2(x-8) | | 4(3x+1)+2(6x-8)=60 | | 0.5x0.20= | | 9x+38=-61 | | 135+x+x=180 | | 5/13=n/25 | | 12x+-37+9x+5=180 | | x*20=70 | | 8^{x+6}=32 | | 4^2x-3=7^3x | | 55-7x=132 | | 2x-184=3x+12 | | 11(3x-6)=66 | | -(3x+2)=1 | | 5x-21=2x-3 | | m=2.12*0.177 | | 3x-1-15x-17=129 |